柔性光电子器件与装备
背景意义
柔性电子以其独特柔性、延展性,具有高度共形、透明和便携性,在信息、能源、医疗、国防等领域具有广泛应用前景,柔性电子器件应用市场,2018年为469.4亿美元,2028年为3010亿美元,柔性电子将成为下一个“万亿美元”市场规模的新兴战略产业。柔性显示是新一代显示发展主流,韩国领跑OLED面板及高端应用,我国TCL、华星光电、华为等企业在量子点显示(QLED)领域持续发力,大量创新产品将催生新业态、新经济,有望“十三五”实现“弯道超车”。


ALD原理
原子层沉积是一种新兴的纳米薄膜制备技术,具有薄膜厚度亚纳米级可控、致密均匀的特点,已在大规模集成电路领域实现工业化应用。然而将其应用于三氢化铝微纳颗粒包覆时,面临表面能大易团聚、富氢表面难均匀形核、传质受阻一致性差等新的挑战,必须从解团聚方法、层状生长工艺、一致性装备等方面进行全面创新。


时间隔离ALD技术原理 | 空间隔离原子层沉积技术在快速大尺度薄膜制备领域具有巨大潜力 |

ALD特点与优势 | 柔性电子器件与显示 |
装备研究
研究中心自主研发了多台ALD沉积装备,包括离心流化原子层沉积系统、空间隔离原子层沉积技术等。分别获得了2016年、2018年日内瓦发明展金奖,其中空间隔离原子层沉积技术获得了特别金奖。


研究成果

已获成果
获奖
· | 微纳米颗粒包覆技术装备 获2016日内瓦国际发明展金奖 | ||
· | 空间隔离原子层沉积技术 获2018年日内瓦国际发明展评审团嘉许特别金奖 |
论文
1. | X. L. Wang, Y. Li, J. L. Lin, B. Shan, R. Chen*, Modular Injector Integrated Linear Apparatus with Motion Profile Optimization for Spatial Atomic Layer Deposition, Rev. Sci. Instrum., 2017, 88, 115108. | ||
2. | R. Chen*, C. L. Duan, X. Liu, K. Qu, G. Tang, X. X. Xu, B. Shan, Surface Passivation of Aluminum Hydride Particles via Atomic Layer Deposition, J. Vac. Sci. Technol. A, 2017, 35, 03E111 | ||
3. | C. L. Duan, P. H. Zhu, Z. Deng, Y. Li,B. Shan,H. S. Fang, G. Feng,R. Chen*, Mechanistic modeling study on atomic layer deposition process optimization in a fluidized bed reactor, J. Vac. Sci. Technol. A, 2017, 35, 01B102. | ||
4. | R. Chen*, J. L. Lin, W. J. He, C. L. Duan, Q. Peng, X. L. Wang, B. Shan, Spatial atomic layer deposition of ZnO/TiO2 nano-laminates, J. Vac. Sci. Technol. A, 2016, 34, 051502. | ||
5. | C. L. Duan, Z. Deng, K. Cao, H. F. Yin, B. Shan, R. Chen*, Surface passivation of Fe3O4 nanoparticles with Al2O3 via atomic layer deposition in a rotating fluidized bed reactor, J. Vac. Sci. Technol. A, 2016, 34, 04C103. | ||
6. | Z. Deng, W. J. He, C. L. Duan, R. Chen*, B. Shan, Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition, J. Vac. Sci. Technol. A, 2016, 34(1), 01A108. | ||
7. | W. J. He, H. T. Zhang, Z. Y. Chen, J. L. Lin, K. Tian, B. Shan, R. Chen*, Temperature Control for Nano-Scale Films by Spatially-Separated Atomic Layer Deposition based on Generalized Predictive Control, IEEE Trans. Nanotechnol, 2015, 14(6), 1094. | ||
8. | C. L. Duan, X. Liu, B. Shan, R. Chen*, Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition, Rev. Sci. Instrum. 2015, 86, 075101. |
专利
