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Abstract Based on molecular dynamics simulations, we
propose using nanostructure-patterned silicon for thermo-
electric applications. Three typical examples are (i) fractal-
like nanoporous Si, (ii) etched Si nanofilm, and (iii) quasi-
periodic layered SiGe. All of them can exhibit very low ther-
mal conductivity (less than 1.0 W m−1 K−1) and may be
mass produced with standard fabrication techniques such as
molecular beam epitaxy or Czochralski process. By main-
taining good electronic transport of bulk Si, it is possible to
achieve ZT ∼ 5.0 at room temperature.

1 Introduction

There are tremendous on-going efforts in searching for new
thermoelectric materials with high enough efficiency, which
can be quantified by the well-known figure of merit:

ZT = S2σT

κe + κl

. (1)
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Here S is the Seebeck coefficient, σ is the electric conductiv-
ity, T is the absolute temperature. κe and κl are the electronic
and lattice thermal conductivity, respectively. A higher ZT
value indicates good thermoelectric performance, and one
therefore must try to maximize the power factor (S2σ )
and/or minimize the thermal conductivity (κ = κe + κl).
However, these transport coefficients (S,σ , and κ) are cou-
pled to each other and related to the carrier concentrations
and crystal structures, it becomes very difficult to optimize
all of them at the same time. As a result, most thermoelec-
tric materials exhibit a ZT value less than 1.0, which cannot
compete with conventional refrigerators or power genera-
tors. It was shown [1, 2], that much higher ZT value can
be achieved in low-dimensional systems or nanostructures.
However, the practical implementation of them remains a
fundamental barrier so far.

As the most abundant and widely used semiconductor,
Si has attracted growing attention for its promising ther-
moelectric applications. Bulk Si, however, is a poor ther-
moelectric material because of its high thermal conductiv-
ity (∼150 W m−1 K−1), giving a ZT ∼ 0.01 at room tem-
perature. It is reported that alloying with Ge to form SiGe
nanocomposites [3–6] or superlattice [7–10], could suppress
the thermal conductivity to 2∼10 W m−1 K−1. However, the
obtained ZT value is still too low to be competitive. Another
efficient way is using low dimensional Si structures, such as
nanowires (NWs), which can reduce the thermal conductiv-
ity by two orders of magnitude due to surface scattering of
phonons [11–13]. Moreover, it was theoretically shown that
the thermal conductivity of Si NWs is diameter-dependent
and can be further reduced by surface roughness [14–17].
The SiGe NWs, on the other hand, were found to exhibit
a very low thermal conductivity less than 1.0 W m−1 K−1

[18]. Nevertheless, the mass production of certain Si or SiGe
NWs and implementing them into a device are not easy,
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which may limit their thermoelectric applications. Recent
work found that nanoporous Si (npSi) has a very low ther-
mal conductivity across the pores [19–22] and can maintain
good electronic transport properties of bulk Si, thus the ZT
value can be enhanced by two orders of magnitude [23].
Unfortunately, to decrease the thermal conductivity below
1.0 W m−1 K−1, the pores must be very closely-packed and
have size as small as 0.6 nm, which is very difficult to pro-
duce in a real process. In this work, we show that by nanos-
tructure patterning, the thermal conductivity of silicon can
be reduced to less than 1.0 W m−1 K−1. Three typical exam-
ples we would like to show are (i) fractal-like nanoporous
Si (npSi), (ii) etched Si nanofilm, and (iii) quasi-periodic
layered SiGe. All of them can be easily accessible from a
manufacturing point of view, and may have very promising
thermoelectric applications.

2 Computational method

Our calculations are performed by using the molecular dy-
namics (MD) as implemented in the LAMMPS code [24].
The thermal conductivity is calculated from heat current au-
tocorrelation function according to the Green–Kubo rela-
tion:

κμv(τm) = 1

ΩkBT 2

∫ τm

0

〈
Jμ(τ)Jv(0)

〉
dτ (2)

where Ω is the system volume, kB is the Boltzmann con-
stant, T is the system temperature, Jμ(τ) is the μth com-
ponent of the heat flux, and the angular brackets indicate an
ensemble average (or an average over time in the case of MD
simulations). Such a method is usually referred to as equi-
librium molecular dynamics (EMD) and was initially used
by Hoover et al. [25, 26] to compare transport coefficients
of flow system calculated from non-equilibrium molecular
dynamics (NEMD). In the subsequent works, Evans and Ci-
ccotti et al. [27–31] performed both EMD and NEMD us-
ing either an approximate or rigorous expression for the
microscopic heat flux, and found consistent values for the
transport coefficients. In the present work, the integration
in Eq. (2) is replaced by summation, and what we actually
compute is [32]:

κμv(τM) = �t

ΩkBT 2

M∑
m=1

(N − m)−1
N−m∑
n=1

Jμ(m + n)Jv(n)

(3)

where N denotes the total number of MD steps, M is the
number of steps for integration, �t is the time step which is
set to 0.55 fs in our simulations, and τM is given by M�t .
For accurate statistical averaging, a very large N should be

Fig. 1 Normalized heat current autocorrelation function of 3.2 nm
npSi as a function of MD time

used and appropriate M must be chosen to decay the heat
current autocorrelation function to zero. We use a Stillinger–
Weber [33] potential for the pure Si systems and Tersoff [34]
potential for the SiGe systems. These potentials include both
two- and three-body interactions and can accurately predict
the thermal properties of Si and Ge systems. In fact, they
have been successful in calculating the thermal conductivity
of Si and Ge nanostructures [12, 17, 18, 23, 35]. To ensure
that the system has reached an equilibrium state, a constant
temperature simulation of 400,000 steps and a constant en-
ergy simulation of 200,000 steps are carried out. After that, a
total of 8,000,000 MD steps (4.4 ns) are performed to record
the heat current and 400,000 steps are selected (220 ps) to
calculate the thermal conductivity according to Eq. (3). This
turns out to be a reliable setting as indicated in Fig. 1 where
the normalized heat current autocorrelation function for an
npSi with pore size of 3.2 nm decays to zero after 150 ps
MD time. Since we are interested in the thermal conduc-
tivity at room temperature which is lower than the Debye
temperature ΘD of the silicon system (∼640 K), a quantum
correction to the MD calculated thermal conductivity should
be considered [36, 37]. Our results are carefully tested with
respect to the size of the simulation box, and we find that a
10 × 10 × 10 supercell is good enough to yield a converged
thermal conductivity. To confirm the reliability of our calcu-
lations, the thermal conductivity of bulk Si at 1000 K is cal-
culated, and we find that the value of 62 W m−1 K−1 agrees
well with previously reported result [32] of 61 W m−1 K−1.

3 Results and discussions

We begin our investigation with npSi. The upper panel of
Fig. 2 shows two npSi with periodically arranged squared
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Fig. 2 Top views of
nanoporous Si with pore sizes of
(a) 2.7 nm, and (b) 3.2 nm. The
corresponding fractal-like
patterns are also shown

pores in the (001) plane of bulk Si. The systems are sim-
ulated in a 5.4 × 5.4 × 5.4 nm3 box. In our calculations,
different pore sizes (from 2.2 to 3.7 nm) are considered
and the corresponding thermal conductivities at 300 K are
summarized in Table 1. Compared with that of bulk Si
(∼150 W m−1 K−1 at 300 K), we find that the thermal con-
ductivity of npSi is reduced significantly. Moreover, the ther-
mal conductivity decreases monotonically with increasing
pore size. For an npSi with pore size of 3.7 nm, the cal-
culated conductivity is only 1.3 W m−1 K−1, about two or-
ders of magnitude smaller than that of bulk Si. This observa-
tion is in reasonable agreement with Lee’s results [19] and
it is believed that the reduced thermal conductivity comes
from the increased phonon scattering by the pore surface.
However, large pore size indicates large porosity of the sys-
tem, which may lead to poor electrical conductivity and is
unfavorable for its thermoelectric performance. We thus fo-
cus on the npSi with relatively smaller pore size, which are
2.7 and 3.2 nm as indicated in Fig. 2. In addition to a sin-
gle pore in the unit cell, we have introduced many smaller
pores which are arranged as a fractal structure. As shown
in the lower panel of Fig. 2, these nanostructure-patterned
silicon samples have larger surface area and may further de-
crease the thermal conductivity by increased phonon scat-
tering. Table 2 gives the calculated room temperature ther-
mal conductivity of these patterns labeled as fractal 1, 2,
3, and 4. For comparison, the results of npSi with a single
pore are also shown. We first focus on the 2.7 nm single
pore and its corresponding nanostructure patterns (fractal 1
and fractal 2). We see that although they have almost the
same porosity, the fractal-like structures indeed have much
smaller thermal conductivities. It is interesting to note that
the thermal conductivity decreases monotonically with in-
creased surface area. This is also the case for the 3.2 nm sin-
gle pore and its corresponding nanostructure patterns. We
see that although the four fractal-like patterns have similar
porosity, the fractal 4 has the lowest thermal conductivity
(0.6 W m−1 K−1) which is consistent with its largest surface

Table 1 Calculated room temperature thermal conductivity of
nanoporous Si with different pore size

Pore sizes (nm) 2.2 2.7 3.2 3.7

κ (W m−1 K−1) 11.1 6.6 4.4 1.3

Table 2 Calculated room temperature thermal conductivity of 2.7 and
3.2 nm npSi and their fractal-like structures. The corresponding poros-
ity and surface area are also given

Pattern Porosity
(VnpSi/Vbulk)

Surface areas
(nm2)

κ

(W m−1 K−1)

2.7 nm single pore 0.23 59.0 6.6

fractal 1 0.20 147.4 1.9

fractal 2 0.23 159.2 1.0

3.2 nm single pore 0.33 70.8 4.4

fractal 3 0.27 171.0 2.0

fractal 4 0.29 224.1 0.6

area. The fractal-like pattern thus provides a very efficient
way to reduce the thermal conductivity of npSi without in-
creasing the porosity.

We next consider Si nanofilm which may also have
small thermal conductivity due to surface scattering of
phonons. Compared with the Si NWs, the two-dimensional
Si nanofilm can be easily fabricated by many methods such
as molecular beam epitaxy or Czochralski process. To calcu-
late the thermal conductivity of two-dimensional silicon, a
non-periodic and shrink-wrapped boundary condition is em-
ployed in the z-direction and a simulation box with 0.9 nm
vacancy layer is used so that the nanofilm can be treated as
independent entity. Figure 3(a) shows the Si (001) nanofilm
with a section of 3.9×3.9 nm2 in the xy-plane. We have cal-
culated the room temperature in-plane thermal conductivity
with thicknesses of 4.8 and 1.6 nm. We found that the cor-
responding value is reduced from 48 to 14 W m−1 K−1, and
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Table 3 Calculated thermal conductivity along x- and y-directions of
etched Si nanofilm with different orientations

Orientations κxx (W m−1 K−1) κyy (W m−1 K−1)

(001) 0.8 8.2

(110) 3.5 60

(111) 0.9 4.0

Fig. 3 (a) Top view of Si nanofilm, (b) side view of etched Si nanofilm
from the y-direction, and (c) side view of etched Si nanofilm from the
x-direction

both are much smaller than that of bulk Si. To get very small
thermal conductivity, one should thus make the nanofilm as
thin as possible. In addition, surface roughness is introduced
into the Si nanofilms to further scatter phonons. Here we
consider the Si (001) nanofilm with thickness of 1.6 nm. The
roughness can be generated by chemically etched grooves
against the x-direction. In the present work, the depth of
the grooves is set to ∼0.8 nm and the width is ∼4 nm. It
is expected that the rough surface will reduce the thermal
conductivity while the underlying prefect Si layers would
maintain good electronic transport. Figures 3(b) and 3(c)
give side views of such etched Si nanofilm. The correspond-
ing thermal conductivities κxx and κyy are calculated and
listed in Table 3. For comparison, we have done additional
calculations where the thermal conductivities of Si (110)
and (111) etched nanofilms are also obtained. We see that
the thermal conductivity shows strong anisotropy and κxx

is significantly smaller than κyy . This is reasonable since
the grooves are etched along the y-direction and the sur-
face roughness along the x-direction causes strong phonon
scattering. The same thermal conductivity anisotropy can
be found for the Si (110) and (111) nanofilms. It is inter-
esting to find that the thermal conductivity along the x-
direction shows an orientation dependence, in the order of
κxx(001) < κxx(111) < κxx(110). Our theoretical results
suggest that in the fabrication of Si nanofilm, it should be
(001) oriented in favor of its thermoelectric application.

The third system we consider is a quasi-periodic layered
SiGe. In the unit cell of such a system, the Si and Ge (001)

Table 4 Calculated thermal conductivity along x-, y-, and z-directions
of quasi-periodic layered SiGe structures according to different Fi-
bonacci numbers

Fibonacci number κxx

(W m−1 K−1)

κyy

(W m−1 K−1)

κzz

(W m−1 K−1)

8 70 105 0.6

13 38 98 2.0

21 60 50 0.3

34 80 95 0.7

layers are arranged according to the Fibonacci number N ,
which can be expressed as:

1:B; 1:A; 2:AB; 3:ABA; 5:ABAAB; 8:ABAABABA . . .

Here A and B represent one Si (001) or Ge (001) layer, and
each is buckled. For a big unit cell corresponding to the Fi-
bonacci number 21, the system can be written as:

. . . |SiGeSiSiGeSiGeSiSiGeSiSiGeSiGeSiSiGeSiGeSi| . . .
Note that if the Fibonacci number is odd, one more Si layer
will be added into the unit cell to maintain the periodic
boundary condition. Figure 4 is a side view of the unit cell
where the Si and Ge (001) layers are arranged according to
the Fibonacci number 21. This quasi-periodically patterned
unit cell repeats along the z-direction to form a special bulk
SiGe. Table 4 summarizes the calculated room temperature
thermal conductivity of such a system with different Fi-
bonacci numbers (N = 8,13,21,34). For all the systems
we considered, we find that the thermal conductivity shows
strong anisotropy. The κzz is significantly smaller than κxx

and κyy , which can be attributed to the quasi-periodic pat-
terning along the z-direction. The broken periodic bound-
ary condition within the unit cell could effectively increase
phonon scattering and thus largely suppress the thermal con-
ductivity. Compared with the fractal and groove patterning
discussed above, it seems that quasi-periodic patterning is
more efficient to reduce the thermal conductivity. For the
system having Fibonacci number 21, the thermal conductiv-
ity can be reduced to 0.3 W m−1 K−1, which is about 1/500
of that found for bulk Si.

The ultra-small thermal conductivity of the quasi-peri-
odic layered SiGe suggests its favorable thermoelectric
properties. As mentioned before, the efficiency of a ther-
moelectric material is determined by the ZT value which in-
cludes both the electron and phonon transport coefficients.
The electronic transport can be essentially derived from
first-principles calculations. For simplicity, here we con-
sider the quasi-periodic SiGe system having Fibonacci num-
ber 8. Our first-principles calculations have been performed
using a plane-wave pseudopotential formulation [38–40],
as implemented in the Vienna ab initio simulation package



Reducing the thermal conductivity of silicon by nanostructure patterning 97

(VASP). We use ultrasoft pseudopotentials for the Si and Ge
atoms and a cutoff energy of 150 eV. We adopt a hexagonal
supercell with dimension of 3.8 Å × 3.8 Å × 25.5 Å, and
the Brillouin zone is sampled with 9 × 9 × 2 Monkhorst–
Pack meshes. Optimal atomic positions are determined until
the magnitude of the forces acting on all atoms become less
than 0.05 eV/Å. The calculated band structure is shown in

Fig. 4 The unit cell of quasi-periodic layered SiGe structures accord-
ing to the Fibonacci number 21

Fig. 5(a). For comparison, the band structure of bulk Si with
eight (001) layers in one unit cell is plotted in Fig. 5(b). We
see that although they have different atomic arrangement in-
side the unit cell, their band structures are almost the same
except for slight changes in the conduction bands along the
Γ –Z direction. This implies that the electronic transport
would not be changed much by quasi-periodic patterning of
Si and Ge. It is worth mentioning that the bandgap is re-
duced from 0.39 to 0.30 eV by quasi-periodic patterning,
and the conduction bands along the Γ –Z direction become
flatter. All these facts suggest that the quasi-periodic layered
SiGe structure will have the same or even better electronic
transport properties than that of bulk Si. Considering the
fact that the thermal conductivity is reduced by ∼500 times,
it is thus reasonable to estimate that the ZT value of the
quasi-periodic SiGe system can be enhanced to ∼5.0, which
makes it a very appealing thermoelectric material and needs
further experimental and theoretical investigations.

4 Summary

In summary, we show by MD simulations that nanoporous
Si exhibits a very small thermal conductivity compared with
that of bulk Si, and the fractal-like patterning can further re-
duce it due to increased surface scattering. The thermal con-
ductivity of Si nanofilm decreases when the film becomes
thinner, and can be also significantly suppressed by etching
nanoscale grooves on its surface. The ultra-small thermal
conductivity (0.3 W m−1 K−1) can be achieved when the
Si and Ge monolayer are quasi-periodically arranged in the
unit cell. Without changing much to the electronic transport
of bulk Si, the nanostructure-patterned Si materials could
have very promising thermoelectric applications.

Fig. 5 Calculated band
structures of (a) quasi-periodic
layered SiGe structure having
Fibonacci number 8, and
(b) bulk Si with eight (001)
layers in one unit cell
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