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a b s t r a c t

The modified embedded atom method (MEAM) has been widely used in describing the physical prop-
erties of elemental crystals, alloys and compounds with multiple lattice structures. We report here the
development of a reliable procedure to reduce the complexity of the MEAM formalism by removing the
many-body screening function. In the proposed formulation, the interatomic pair potential is obtained by
applying Chen-M€obius lattice inversion up to fifth nearest neighbors, so that the cohesive energy curve
can be reproduced faithfully. The newly developed model (Lattice Inversion MEAM, LI-MEAM), which can
be viewed as a direct extension of the embedded atom method (EAM), no longer requires the compu-
tation of many-body screen functions and has fewer adjustable parameters than MEAM. As an illustra-
tion, we optimized the potential parameters of body centered cubic iron (bcc-Fe). The values of the
calculated physical properties agree well with experimental results. We further investigated the size-
dependent melting behavior of bcc-Fe nanoparticles (NPs) with particle size ranging from 725-atom
(~25 Å) to 22899-atom (~80 Å) using replica exchange molecular dynamics (REMD) simulations. Our
simulations show advantages of LI-MEAM in modeling of the melting process and quantitatively reveals
that the liquid skin melting (LSM) process of bcc-Fe NPs.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Atomistic simulations are powerful techniques to explore the
physical properties of materials on micro scales. While simulations
with billions of atoms or millisecond time span can be achieved on
super computers nowadays [1,2], the reliability and accuracy of the
simulation results depend critically on the quality of the inter-
atomic potentials [3]. Many efforts have been devoted to the
development of more accurate and reliable potentials for
describing the interactions between specific atoms [4e8]. Among
the various models, the embedded atom method (EAM) proposed
by Daw et al. [4,5] is an elegant and powerful model for describing
terials Processing and Die and
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, Hubei, People's Republic of
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atomic interactions in bulk metals. To make EAM applicable to
more complex systems, several modifications and extensions to
EAM were proposed. Johnson and Oh [9,10] developed the analyt-
ical embedded atom method by choosing appropriate analytical
forms for all the EAM functions (AEAM). Later on, Zhang, Hu and
Ouyang [11,12] added an analytical modification term to the AEAM
expression of cohesive energy and proposed a modified form of the
EAM potential. Lee and Cho [13] extended EAM by introducing a
local structural dependent prefactor with three additional param-
eters to account for the bond characteristics arising from asym-
metrical surface atoms. Shan et al. [14] reported an extension of
EAM potentials applied to alloy nanoparticles by refining the
original EAM embedding and cross-pair functionals. Some works
have also been done to improve the EAM accuracy by incorporating
the Chen-M€obius lattice inversion [15e19] method into the po-
tential fitting process [20e23]. In summary, most of these extended
models could show relatively good performance in describing the
properties of specific systems. However, due to the lack of angular
electron density dependence, EAM derived models in general lack
the transferability to apply to other none-close packed structures,
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complex oxides, or systems with partial covalent bonding charac-
teristics [3].

Aimed at improving the description of directional bonding in
solids, Baskes et al. [24e27] modified the EAM by considering three
directional partial electron densities in addition to the original
spherical component, which conceptually represent p, d, f orbitals
with different angular momentum, and put forward the modified
embedded atom method (MEAM). Due to the consideration of the
interactions from only the first nearest neighbors, it is also named
as the first nearest-neighbor MEAM (1NN MEAM). The 1NN MEAM
stands out for its universality and accuracy, and could describe the
properties of a variety of metals and alloys accurately [26,27].
However, it faces difficulties in modeling some bcc transition
metals, such as incorrect ordering among low-index surface en-
ergies and structural instability [28]. In order to mitigate these
shortcomings, Lee et al. [28] modified 1NNMEAM by extending the
interactions to the second nearest neighbors, and proposed the
second nearest-neighbor MEAM (2NN MEAM). Compared to 1NN
MEAM and previous EAM models, 2NN MEAM is a more accurate
model for describing metals, alloys and covalent systems. Much
efforts have also been made by Lee et al. [28e31] and other re-
searchers [32,33] on building up a database of potential parameters
based on 2NN MEAM.

In the practical application of MEAM (If not specified below,
MEAM refers to both 1NN MEAM and 2NN MEAM.), an additional
many-body screening function must be introduced to cutoff the
interactions from neighbors beyond first or second nearest neigh-
bors on the electron densities and pair energies, which increases
the complexity of this model [26e28]. Furthermore, there seems to
be a lack of systematic way for the determination of the parameters
associated with the many-body screening function. For pure
element, there are two parameters, Cmax and Cmin, which are
related to screening function. But the parameter set quickly grow
into a large set as a total of eight parameters of Cmax and Cmin (A-A-
B, B-B-A, A-B-A, A-B-B) are needed for binary AB alloys, and the
parameter size increase exponentially for multicomponent systems
[3,31,33]. In MEAM formalism where the interaction is limited to
first or second neighbors, the many-body screening function is
needed as a practical approach to obtain the desired accuracy. In
the present work, we report the reformulation of the MEAMmodel
by using Chen-M€obius lattice inversion method (Lattice Inversion
MEAM, LI-MEAM). By incorporating the lattice inversion technique,
we have successfully removed the many-body screening function,
which makes MEAM formalism simpler. From another point of
view, it provides transparent physics, which can be viewed as a
direct extension of EAM by considering the directional partial
electron densities. Also, the number of adjustable parameters has
been reduced. In order to validate the developed LI-MEAM model,
the potential was parameterized for body centered cubic iron (bcc-
Fe), which is a classical benchmark for many body potentials. Some
key physical properties of Fe were calculated and compared with
the results of experiments and other potential models. Further-
more, the size-dependent melting behavior of bcc-Fe nanoparticles
(NPs) was investigated using replica exchange molecular dynamics
(REMD) simulations [34,35].

2. Methodology

2.1. Chen-M€obius lattice inversion

Chen-M€obius inversion formula was first derived by Chen based
on the number theory [15] and then applied to a variety of inverse
problems in physics [36e38]. Later on, Chen et al. [17e19] devel-
oped a series of lattice inversion methods by inverting cohesion for
interatomic potential in bulk materials and adhesion for
interatomic potential across interfaces. The following is a brief
introduction to the fundamentals of Chen-M€obius lattice inversion.

Theoretically speaking, any cohesive energy for a multidimen-
sional crystal lattice can be expressed as a sum of many-body in-
teractions, which include two-body, three-body, …, n-body
interactions. If only two-body interactions are considered, the
expression for cohesive energy per atom, E, can be simplified as the
following:

E ¼ 1
2

X
jðsiÞ

F
�
rij
�
; (1)

where rij represents the lattice vector from site i to site j,FðrijÞ is the
corresponding pair potential. Considering a standard reference
structure, such as bcc or fcc,FðrijÞ can be expanded along the orders
of nearest neighbors, then Eq. (1) can be written as:

EðrÞ ¼ 1
2

X∞
m¼1

ZðmÞ
0 F

�
aðmÞ
0 r

�
; (2)

where m is the order of the nearest neighbors and ranges from 1 to
infinity, ZðmÞ

0 is the actual number ofm-th nearest neighbors, aðmÞ
0 is

the ratio of the distance ofm-th nearest neighbors to r, which is the
distance for the first nearest neighbors.

In order to apply Chen-M€obius lattice inversion to obtain pair
potential function from Eq. (2), a mathematic technique is used to
extend the original series faðmÞ

0 g to a multiplicative semi-group
faðmÞg such that, for any two integers i and j, an integer k always
exists which satisfying:

aðiÞaðjÞ ¼ aðkÞ: (3)

Then Eq. (2) can be rewritten as:

EðrÞ ¼ 1
2

X∞
m¼1

ZðmÞF
�
aðmÞr

�
; (4)

where

ZðmÞ ¼
(
Z0
�
a�1
0

h
aðmÞ

i�
aðmÞ2

n
aðmÞ
0

o
0 aðmÞ;

n
aðmÞ
0

o : (5)

Note that fZðmÞ
0 g is the actual numbers of the m-th nearest neigh-

bors, and fZðmÞg is the extended group which contains fZðmÞ
0 g with

all the additive elements equal to zeros. Eq. (4) is a standard form
available for applying Chen-M€obius lattice inversion directly to
invert the relationship between the two involved functions, saying
E(r) and FðrÞ. The inverted equation is shown as:

FðrÞ ¼ 2
X∞
m¼1

IðmÞE
�
aðmÞr

�
; (6)

where the inversion coefficient IðmÞ is given by:

X
aðmÞjaðkÞ

IðmÞZ

"
a�1

 
aðkÞ

aðmÞ

!#
¼ dk1; (7)

and dk1 is Kronecker delta function.
Fig. 1 shows the scheme about how to obtain the pair potential

from the cohesive energy by applying Chen-M€obius lattice inver-
sion. The arrows in the figure represent the determinant relation-
ships between the involved parameters or physical quantities. In
details, the cohesive energy E(x) can be obtained from experiments



Fig. 1. Schematic diagram about how to obtain the pair potential from cohesive energy
by applying Chen-M€obius lattice inversion.
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or ab initio calculations. The involved coefficients I(m) and a(m) can
be calculated from the reference structure uniquely. Then the pair
potential can be yielded from Eq. (6). In practical, finite but enough
items are used in Eqs. (4) and (6) to guarantee appropriate accuracy
and efficiency.

2.2. Lattice inversion MEAM

Compared to previous MEAM models, the main modification of
LI-MEAM lies in the removal of the many-body screening function,
and the inclusion of the interactions from farther nearest neighbors
by applying Chen-M€obius lattice inversion. Details of previous
MEAM models can be found in Ref. [28]. In this subsection, we
introduce the formulations of the developed LI-MEAM model
briefly and point out the main differences.

The total energy per atom for an arbitrary system in LI-MEAM is
composedof twoparts, theembeddingenergyand thepairenergy, as:

ðEÞLI�MEAM ¼ FðriÞ þ
1
2

X
isj

F
�
rij
�
; (8)

where F is the embedding function, ri is the background electron
density at site i,FðrijÞ is the pair potential between atoms i and j at a
distance rij. As a comparison, the corresponding equation in pre-
vious MEAM models can be given by considering the many-body
screening function, Sij, as:

ðEÞMEAM ¼ FðriÞ þ
1
2

X
isj

F
�
rij
�
Sij: (9)

The embedding functions in Eq. (8) and Eq. (9) are the same and
given by:

FðrÞ ¼ AEc
�
r=r0

�
ln
�
r=r0

�
; (10)

where A is the scaling factor, Ec is the sublimation energy, r0 is the
background electron density for the reference structure. Usually,
for a specified element, the equilibrium structure is taken as the
reference structure. The background electron density ri in Eq. (8) is
given by:

ri ¼ r
ð0Þ
i GðGÞ; (11)

where

GðGÞ ¼ 2
.�

1þ e�G
�

(12)

and

G ¼
X3
k¼1

tðkÞi

 
r
ðkÞ
i

r
ð0Þ
i

!2

: (13)
In the equations, rðkÞi (k ¼ 0,1,2,3) represent the spherical (k ¼ 0)
and angular (k ¼ 1,2,3) electron densities. tðkÞi (k ¼ 1,2,3) are the
corresponding weighting factors for the three angular electron
densities. rðkÞi are given by:
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Here, raðkÞj (k ¼ 0,1,2,3) are the atomic electron densities of atom j
for different directions. raij , r

b

ij , r
g

ij are the a, b, g components of rij,
respectively. Similarly, the corresponding electron densities for
previous MEAM models can be expressed by multiplying all the
r
aðkÞ
j in Eq. (14) by the same screening function, Sij, as:�
r
ðkÞ
i

�
MEAM

¼
�
r
ðkÞ
i

�
LI�MEAM

Sij: (15)

r
aðkÞ
i in Eq. (14) and Eq. (15) have the following form:

r
aðkÞ
i

�
rij
� ¼ e�b

ðkÞ
i ðrij=re�1Þ; (16)

where b
ðkÞ
i (k ¼ 0,1,2,3) are decay factors for corresponding atomic

electron densities, re is the nearest neighbor distance in the equi-
librium reference structure.

The next step is to determine the pair potential FðrijÞ in Eq. (8)
so that the total energy for an arbitrary system can be calculated. To
obtain the pair potential, a reference structure should be selected so
that the total energy (or called cohesive energy) could be deter-
mined according to experimental data or ab initio calculations
directly. Herein, the universal equation of state proposed by Rose
et al. [39], is used to express the total cohesive energy per atom for
the reference structure, Eu, as a function of the nearest-neighbor
distance r:

EuðrÞ ¼ �Ecð1þ a�Þe�a� ; (17)

where

a� ¼ aðr=re � 1Þ (18)

and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9BU=Ec

p
: (19)

Here, B is bulk modulus. U is equilibrium atomic volume, which is
dependent on the equilibrium nearest-neighbor distance re.

The pair energy per atom could thus be calculated by subtract-
ing the embedding energy from the cohesive energy. Normally, the
pair energy is expressed as the accumulation of the pair potentials
of the surrounding neighbors. In practice, 1NN MEAM only accu-
mulates the pair potentials of the first nearest neighbors, while
2NN MEAM includes the pair interactions from both the first and
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the second ones. As for LI-MEAM, the pair potentials of arbitrary
nearest neighbors can be considered in theory. In practical imple-
mentation, a cutoff distance rc is introduced to consider finite but
enough nearest neighbors, as:

EuðrÞ � F
h
r0ðrÞ

i
¼ 1

2

Xam0 r< rc

m¼1

ZðmÞ
0 F

�
aðmÞ
0 r

�
; (20)

where ZðmÞ
0 and aðmÞ

0 are the same as those in Eq. (2). Besides, in
order to improve the performance of the cutoff effect, the smooth
radial cutoff function, fc½ðrc � rÞ=Dr�, which was also used in pre-
vious MEAM models, is preserved in LI-MEAM to handle on all the
cutoff regions, where fc is the smooth cutoff function given by:

fcðxÞ ¼
8<
:

1; x � 1h
1� ð1� xÞ4

i2
; 0< x<1

0; x � 0

; (21)

and Dr is the cutoff region. For present work, Dr was given 0.2.
In order to apply Chen-M€obius lattice inversion on Eq. (20) to

obtain the pair potential, the involved series fZðmÞ
0 g and faðmÞ

0 g
should be firstly extended to corresponding multiplicative semi-
groups fZðmÞg and faðmÞg according to the method introduced in
section 2.1. Then the following equation can be obtained:

EuðrÞ � F
h
r0ðrÞ

i
¼ 1

2

XaðmÞr< rc

m¼1

ZðmÞF
�
aðmÞr

�
: (22)

If the left two items in Eq. (22) are regarded as one, it is with the
same form as Eq. (4). So Eq. (22) can be inverted to obtain the pair
potential function by applying Chen-M€obius lattice inversion. The
following equation shows the inverted function:

FðrÞ ¼ 2
XaðmÞr< rc

m¼1

IðmÞ
n
Eu
�
aðmÞr

�
� F
h
r0
�
aðmÞr

�io
: (23)

where the inversion coefficient series fIðmÞg is decided by fZðmÞg
and faðmÞg uniquely and can be calculated using Eq. (7). Using Eq.
(23), the pair potential can be obtained, which can be used in Eq. (8)
to calculate the total energy of arbitrary systems.

In summary, there are totally 12 parameters involved for one
single element in LI-MEAM, as the scaling factor A, the sublimation
energy Ec, the equilibrium nearest-neighbor distance re, the bulk
modulus B, the weight factors tðkÞi (k ¼ 1,2,3), the decay factors bðkÞ

(k ¼ 0,1,2,3) and the cutoff distance rc. The parameters, Cmax and
Cmin, which are used in previous MEAM models, are no longer
needed for the many-body screening function.
2.3. Melting behavior of NPs using REMD

Due to the consideration of interactions from farther nearest
neighbors, LI-MEAM normally uses relatively large cutoff distance,
rc, compared with previous MEAM models. Considering that the
melting behavior of NPs were generally investigated by using
longerange interaction potentials, such as Finnis-Sinclair potential,
Sutton-Chen potential [35,40e42], it serves as a good case for
testing the accuracy and reliability of the LI-MEAM model.

Melting behavior is one of the most fundamental physical
properties for NPs. Many attentions have been paid to studying the
relationship between the sizes of NPs and the melting points, and
further discovering the melting mechanism of NPs [35,41,43e47].
Many different models have been proposed to explain the mecha-
nism of themelting behavior of NPs [35,44e47]. Among the various
models, the homogeneous melting (HGM) model and liquid skin
melting (LSM) model are most widely used for the melting of
spherical NPs [44]. The HSM model considers that the entire NP
melts homogeneously, while LSM model considers that an outer
liquid shell of constant thickness forms before the melting of the
entire NP. For HGM model, the relationship between the melting
point and the size of NPs can be expressed as:

Tcm
Tbm

¼ 1� bHGM

D
; (24)

while that of LSM model can be given by:

Tcm
Tbm

¼ 1� bLSM

D� 2d
; (25)

where Tcm and Tbm are the melting points of the NP and the cor-
responding bulk material, respectively, D is the diameter of the NP,
bHGM and bLSM are material constants for HGM model and LSM
model, respectively, d is the thickness of the outer liquid shell in
LSM model. From Eqs. (24) and (25), the melting point of NP, Tcm,
depends linearly on the inverse diameter of NP, 1=D, for HGM
model, but non-linearly for LSM model.

The most straightforward method for the calculation of melting
point is carrying out molecular dynamics (MD) simulations of a
perfect lattice at increasing temperatures, which is called hysteresis
method. The temperature at which the potential energy per atom
increases sharply corresponds to the melting point. However,
superheating or undercooling usually occurs during MD simula-
tions, which results in an overestimation of the melting points. In
order to mitigate the problem, Shu et al. applied replica exchange
molecular dynamics (REMD) [34] to the determination of the
melting point of NP and showed better accuracy in contrast to the
conventional MD methods [35]. In present work, REMD method
was adopted to calculate all the melting points, both for bulk and
NPs.

In order to probe the size-dependent melting point of bcc-Fe
NPs based on the developed LI-MEAM model, melting of different
sizes of spherical bcc-Fe NPs with the diameters ranging from 25 Å
to 80 Å (corresponding atom number, N, from 725 to 22899), were
simulated by REMD. The initial structures of all the NPs were
approximately spherically cut out from the bulk phase [35,44]. In all
the REMD simulations, the time step for integration was 1 fs (fs),
and the NVT ensemble was applied. Meanwhile, 16 temperatures
were used for all the NPs and the temperatures were selected near
the melting point of each NP. The total simulation time of each
replica for all systems was 5 ns (ns) [35], which was proved to be
sufficient for equilibration. The replicas were exchanged every 1 ps
(ps). For each temperature (replica), the physical quantities were
averaged within the last 2 ns. For each sweep of 2 ps, the first ps
was used for the equilibrium of the system, and only the second ps
was used for statistics. All the related simulations in present work
were performed by using the LAMMPS code. [48].
3. Results and discussion

3.1. Determination of the parameters

As introduced in subsection 2.2, a total of 12 parameters are
used in LI-MEAM model. These parameters are listed in Table 1.
Among which, Ec, re and Bwere given experimentally, and bð1Þ, bð2Þ,
bð3Þ were given the same values as those in previous MEAMmodels.
Therefore, only 6 adjustable parameters were needed to be deter-
mined for single element, i.e. A, bð0Þ, tð1Þ, tð2Þ, tð3Þ and rc.



Table 1
Optimized parameters of bcc-Fe based on LI-MEAM potential, in comparisonwith those based on 1NNMEAM and 2NNMEAM. Values listed are the sublimation energy EcðeVÞ,
the equilibrium nearest-neighbor distance reð�AÞ, the bulk modulus Bð1012dyn=cm2Þ, the exponential decay factors for the atomic densities bð0Þ , bð1Þ , bð2Þ , bð3Þ , the scaling factor
for the embedding energy A, the weighting factors for the atomic densities tð1Þ , tð2Þ , tð3Þ , the cutoff distance rc, and the adjustable factors for screening function Cmax and Cmin.

Ec re B bð1Þ bð2Þ bð3Þ A bð0Þ tð1Þ tð2Þ tð3Þ rc Cmax Cmin

1NN MEAM 4.29 2.48 1.67 1.00 1.00 1.00 0.89 2.94 3.04 4.12 �1.50 4.0 2.80 2.00
2NN MEAM 4.29 2.48 1.67 1.00 1.00 1.00 0.57 3.67 2.90 1.00 �8.50 4.0 2.80 0.16
LI-MEAM 4.29 2.48 1.67 1.00 1.00 1.00 0.532 4.182 �0.778 8.724 5.171 5.678

Fig. 2. The pair potential curve (red-solid curve) and the ratio of the pair energy (black
bars) contributed by each order of nearest neighbors to the total pair energy of bcc-Fe
based on LI-MEAM using the optimized parameters. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
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In present work, bcc-Fe was chosen as an illustration to validate
LI-MEAM potential because it's a typical non-close packed system
to test the availability of interatomic potential [23,28]. In order to
determine the above 6 potential parameters for bcc-Fe, some
physical properties, elastic constants (C11, C44), vacancy formation
energy (Efv), structure energy difference between bcc and fcc
(DEbcc/fcc), surface energy of the lowest surface (110) (Eð110Þ), were
selected as the optimization targets. C12 was not taken into account,
since it can be determined from C11 and B in cubic systems. In
experiment, obtaining the surface energy of each surface is difficult
and only the average surface energy for polycrystalline is available.
Referring to previous works [23,28,29], we optimized the lowest
surface energy (Eð110Þ) to approach the average value. Besides, in
order to make the results comparable, the same experimental data
as 1NN MEAM and 2NN MEAM were taken as the optimization
targets in LI-MEAM, which were reported in Ref. [49e53].

Particle Swarm optimization (PSO) algorithm [32,33,54] was
used to determine all the six parameters simultaneously. The six
parameters, A, bð0Þ, tð1Þ, tð2Þ, tð3Þ and rc, were first given a set of
initial values to start PSO algorithm. The five selected physical
properties as fitting targets, C11, C44, DEbcc/fcc, Efv , Eð110Þ, were
calculated using this group of parameters based on LI-MEAM and
the relative errors for each properties were calculated. A new group
of parameters would be generated by PSO algorithm until the errors
were acceptable. In order to guarantee the accuracy of some
specified properties, different weighting factors were assigned to
the calculated errors of different properties. Besides, we imposed
reasonable parameter bounds to ensure the physical correctness of
the model.

The final determined parameters of bcc-Fe based on LI-MEAM
potential are listed in Table 1, compared with those obtained
based on 1NN MEAM and 2NN MEAM. In the table, the former six
parameters, Ec, re, B, bð1Þ, bð2Þ, bð3Þ, were fixed on experimental or
specified values during the optimization, the middle six parame-
ters, A, bð0Þ, tð1Þ, tð2Þ, tð3Þ, rc, were optimized, and the latter two,
Cmax, Cmin, only existed in previousMEAMmodels. From Table 1, the
cutoff distance, rc, of bcc-Fe was optimized to be 5.678 Å based on
LI-MEAM, which lies between the fifth and the sixth nearest
neighbors of the equilibrium structure of bcc-Fe, and means that
the interactions up to fifth nearest neighbor are considered. To
illustrate the contributions of each order of nearest neighbors to the
total pair energy, Fig. 2 was drawn. In the figure, the pair potential
curvewas given. The black bars show the ratios for the five different
orders of nearest neighbors. The positions of the bars correspond to
the m-th nearest neighbor distances. The deep valley of the pair
potential curve corresponds to the first and second nearest neigh-
bors, which means the pair interactions are relatively strong.
Quantitatively, the pair energy from the first and second nearest
neighbors donates about 83.6% of the total pair energy. For farther
nearest neighbor contributions, even though the magnitudes of the
pair potentials from third and fourth neighbors are tiny from the
curve, the larger number of neighbors is much larger than those of
first or second neighbors (12 for the third and 24 for the fourth). It is
shown that the interactions from the third and fourth nearest
neighbors donate up to 15.0% to the total energy, which could be
significant in modeling some long range effect and have been
previously neglected in other MEAM models. The fifth nearest
neighbors contributes about 1.4% to the cohesive energy, which
comes out as a reasonable a optimization result.

Fig. 3 shows the pair energies and embedding energies of bcc-Fe
as a function of atom separation for 1NNMEAM, 2NNMEAM and LI-
MEAM. The inset of Fig. 3(a) schematically shows how the cutoff
distances map to the nearest neighbors for different models. As the
figure shown, by taking increasing number of nearest neighbors
into account from 1NN MEAM to 2NN MEAM and finally LI-MEAM,
these curves become weaker with longer interaction ranges. Thus,
LI-MEAM can approach a more realized physical picture since the
contribution of interaction decays off gradually going to farther
nearest neighbors.

3.2. Calculation of physical properties

The optimized potential parameters of bcc-Fe through the above
procedures were used to compute some critical physical properties
in order to evaluate the reliability of the developed LI-MEAM, such
as formation energies of surface (100) and (111), Eð100Þ and Eð111Þ,
structure energy differences, DEfcc/hcp, DEbcc/sc, DEbcc/dia, relative
changes in nearest neighbor distance, DRbcc/sc, DRbcc/dia, vacancy
migration energy barrier, Emv , and some thermal properties (ther-
mal expansion coefficient, ε, specific heat, Cp, bulk melting point,
Tbm). The experimental data and results calculated based on other
potential models, EAM [23], 1NN MEAM, 2NN MEAM, are also
presented in Table 2 as comparison. In the table, the properties
above the middle horizontal line were used for the optimization of
the potential parameters, while the others were predicted based on
individual potential models. As illustrated in Table 2, all the prop-
erties used as the fitting targets could be reproduced accurately
exceptDEbcc/fcc, which is somewhat smaller than the experimental



Fig. 3. Comparison of the pair energies (a) and the embedding energies (b) of bcc-Fe
for different MEAM models (1NN MEAM, 2NN MEAM, LI-MEAM) using individual
optimized parameters. The inset in figure (a) is a schematic diagram to illustrate how
the cutoff distances map to the nearest neighbors for different MEAM models.

Table 2
Calculated physical properties of bcc-Fe using the optimized parameters based on LI-
MEAM, in comparison with experimental data and the previous calculations based
on EAM (Ref. [23]), 1NN MEAM (Ref. [26]) and 2NN MEAM (Ref. [28]). Values listed
are the elastic constants C11, C12, C44 (10

12 dyn/cm2), structure energy differences DE
(eV/atom), relative changes in nearest neighbor distance DR (Å), vacancy formation
energy Efv (eV), vacancy migration energy barrier Emv (eV), (100), (110), and (111)
surface energy Eð100Þ, Eð110Þ , and Eð111Þ (erg/cm2), thermal expansion coefficient ε

(10�6/K), specific heat Cp (J/mol K) and melting point Tbm (K). The experimental
elastic constants, structure energy differences, vacancy formation energy and
migration energy barrier, surface energy and thermal properties are from Ref. [49],
Ref. [50], Ref. [51], Ref. [52] and Ref. [53], respectively.

Expt. EAM 1NN MEAM 2NN MEAM LI-MEAM

C11 2.30 1.908 2.31 2.30 2.30
C12 1.35 1.545 1.36 1.36 1.36
C44 1.17 1.367 1.17 1.17 1.17
DEbcc/fcc 0.082 0.082 0.03 0.041 0.044
Efv 1.79 2.29 1.55 1.67 1.79
Eð110Þ 2360 1946a 1634 2362 2427a

Eð100Þ 2060a 2406 2508 2547a

Eð111Þ 2308a 1768 2669 2771a

DEfcc/hcp �0.023 �0.029 �0.013 �0.014 �0.011
DEbcc/sc 0.65 0.21 0.95 0.47
DRbcc/sc �0.10 �0.16
DEbcc/dia 0.48 1.77 1.475
DRbcc/dia �0.26 �0.22
Emv 0.55 0.40 0.41
ε 12.1 11.0 11.3
Cp 25.5 26.0 24.1
Tbm 1811 1990 2020b 1872

a Unrelaxed values.
b The lower limit of the range in Ref. [28].
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value and is near to that of 1NN MEAM and 2NN MEAM. Lee et al.
[28] mentioned that one main problem of 1NN MEAM is its wrong
prediction for the order of the surface energies among the three
low-index surfaces. The experimental results have shown that the
relationship of surface energy among surface (100), (110) and (111)
is E(110) < E(100) < E(111) [55,56]. In present work, only the lowest
surface energy [that of (110) surface] was selected as the fitting
target and the other two surface energies were predicted with no
constraint among them. The results shows that the order among
the three low-index surface energies is in agreement with experi-
mental data. Another problem of 1NN MEAM is its failure in the
prediction of the ground structure for some bcc metals [28], such as
bcc-Fe. Maintaining the right ground structure is a crucial test for
specific interatomic potentials. The structural energy differences
and relative changes in nearest neighbor distance between various
crystal structures (bcc, fcc, sc and diamond) are also presented in
Table 2. Among these items, DEbcc/fcc was used for fitting,
DEfcc/hcp, DEbcc/sc, DEbcc/dia, DRbcc/sc and DRbcc/dia were pre-
dicted. Here, the calculation on the hcp structure was done for a
fixed ideal value of c/a, 1.633. The results show that LI-MEAM can
give right ground structure. No experimental data is available for
DEbcc/sc, DEbcc/dia, DRbcc/sc and DRbcc/dia. However, the values
calculated by 2NNMEAM and LI-MEAM arewith very similar levels.
The vacancy migration energy barrier, Emv , can also be predicted
with acceptable accuracy based on LI-MEAM. Finally, some thermal
properties, as thermal expansion coefficient, ε, specific heat, Cp, and
bulk melting point, Tbm, were calculated. In order to make the re-
sults comparable with available results, the temperature regions
were controlled between 100 K and 400 K for the calculations of ε
and Cp. As to the calculation of Tbm, REMD method was used. From
the calculated results shown in Table 2, it can be found that the
thermal expansion coefficient and the specific heat are in agree-
ment with the experimental results. Especially, the bulk melting
point, which is commonly overestimated, was predicted with
excellent accuracy.

From the perspective of reproducing the fitting targets and
predicting the basic physical properties, LI-MEAM shows compa-
rable performance and accuracy compared with all the other po-
tential models. This shows the validity and reliability of LI-MEAM.
3.3. REMD simulations of NPs

To verify the transferability of the developed LI-MEAM, we
further calculated melting of NPs aside from bulk properties of bcc-
Fe. Herein, we employed 2NN MEAM and LI-MEAM potentials to
carry out REMD simulations on a series of spherical bcc-Fe NPs
(listed in Table 3) to study how the melting point depends on the
size and further explore the melting mechanism of bcc-Fe NPs.
Fig. 4(a) gives the calculatedmelting curves, which are expressed as
the changing of potential energy per atom with respect to the
temperature, for different diameters of bcc-Fe NPs based on LI-
MEAM. Besides, three snapshots of cross section of D70-NP at
different temperatures (0 K, 1680 K, 1700 K), visualized by AtomEye
[57], are shown in Fig. 4(b). The coloring denotes the coordination
number. The initial structure of D70-NP at 0 K is very regular and all
the inner atoms appear to be MistyRose, which means their



Table 3
Detailed information of each spherical bcc-Fe NP used in present work, and the
corresponding melting point (K) calculated based on 2NN MEAM and LI-MEAM. D
(Å) and N are the diameter and number of atoms, respectively.

System D N Melting point

2NN MEAM LI-MEAM

D25 25 725 1228 1145
D30 30 1243 1438 1309
D35 35 1924 1574 1431
D40 40 2874 1662 1508
D45 45 4088 1709 1565
D50 50 5601 1745 1603
D55 55 7391 1797 1635
D60 60 9640 1815 1658
D65 65 12278 1823 1681
D70 70 15353 1857 1700
D80 80 22899 1877 1720
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coordination numbers are 14. When the temperature increases to
1680 K, some atoms appear in the inner of D70-NP (RoyalBlue or
Cyan atoms in the small circle), which means the number of their
nearest neighbors increases or decreases by one. Even so, these
atoms are still near their initial positions. Hence, the changing of
Fig. 4. (a) Calculated melting curves of different sizes of spherical bcc-Fe NPs using
REMD simulations based on LI-MEAM using the optimized parameters. (b) Snapshots
of cross section of D70-NP at three different temperatures (0 K, 1680 K, 1700 K) during
heating. Coloring denotes the coordination number. (Main colors with respect to the
coordination numbers: Gray, 4; Red, 5; RoyalBlue, 13; MistyRose, 14; Cyan, 15; Coral,
16; Green, 17). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
coordination numbers mainly results from the intense thermal vi-
bration. However, the surface irregular atoms increases to two or
three layers (in the annulus zone), which could be regarded as
evidence of surface melting. When the temperature continually
reaches 1700 K, a sharp increase of the potential energy per atom
appears, and the corresponding structure of D70-NP is totally a
mass, not only for the coordination number, but also for the
structure. The NP at 1700 K could be regarded as a totally melted
one and the corresponding temperature could be defined as the
melting point.

Using the same definition, the melting points of all the NPs
based on 2NN MEAM and LI-MEAM can be obtained, which are
listed in Table 3. Meanwhile, these melting points are drawn in
Fig. 5(a) as a function of the diameter of NPs. The corresponding
melting points of bulk bcc-Fe are also plotted as horizontal lines.
One common feature is that the melting points of NPs are lower
than that of corresponding bulk material with the minimum gap
being about 150 K for both potential models. Besides, from the
tendency of the melting curves of NPs, it is reasonable to surmise
that the melting point of NPs should be approaching to that of bulk
Fig. 5. (a) Melting point of bcc-Fe NP as a function of the diameter calculated using
2NN MEAM (blue-dash) and LI-MEAM (red-solid). The horizontal lines represent the
melting points of corresponding bulk materials. (b) The reduced melting temperature
as a function of the inverse diameter of bcc-Fe NP based on LI-MEAM. The black
squares are the REMD calculated results, and the dash-green and solid-red curves
represent the fitted results using HGM and LSM models, respectively. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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for extremely larger NPs. On the other hand, referring to the
experimental value of the melting point of bulk bcc-Fe (1811K),
2NN MEAM overestimates the melting points of both the bulk and
the NPs of bcc-Fe, while LI-MEAM could give more reasonable re-
sults. In addition, the curve based on LI-MEAM is slightly smoother
than that of 2NNMEAM.We attribute it to the larger cutoff distance
LI-MEAM used, which generally leads to less abrupt changes in MD
simulations and thus a smoother curve. In order to explore the
melting mechanism of spherical bcc-Fe NPs, we have compared the
calculated relationship between Tcm=Tbm and 1=Dwith the LSM and
HSM model in Fig. 5(b). In the figure, the black squares represent
the reduced melting temperature as the function of the inverse
diameter of NP, the dash-green line and the solid-red curve
represent the fitting results of HGM model and LSM model using
Eqs. (24) and (25), respectively. It is obvious that LSM model could
be better fitted to the REMD simulation results than HGM model,
which means that the size-dependent melting behavior of bcc-Fe
NPs is submitted to LSM model, rather than HGM model. This is
in accordance with previous report [35]. Meanwhile, the constant
thickness, d, of the outer liquid shell in LSM model was fitted to be
5.22 Å, which corresponds to two or three layers of atoms. This is
consistent with the observation from Fig. 4(b), and confirms the
pre-melting of the surface before the melting of the entire NP. The
results confirm the availability and accuracy of LI-MEAM in
modeling NP systems.
4. Conclusions

In present work, we developed a reliable procedure to simplify
the MEAM interatomic potentials based on Chen-M€obius lattice
inversion method. The many-body screening functions were
removed and the interactions from farther nearest neighbors were
considered. To validate LI-MEAM model, we optimized the poten-
tial parameters of bcc-Fe and calculated its physical properties,
which agree well with experimental values. Finally, LI-MEAM was
used to investigate the melting behavior of different sizes of bcc-Fe
NPs by REMD simulations. It's found that themelting mechanism of
bcc-Fe is subject to LSM model. Overall, LI-MEAM exhibits several
advantages such as fewer parameters, more accurate melting
points and smoother melting curves, on the calculations of physical
properties.
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