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The structural, electronic, and thermoelectric properties of BiSb nanotubes are investigated using a multiscale
approach which combines the first-principles pseudopotential method, semiclassic Boltzmann theory, and
molecular dynamics (MD) simulations. Our calculations indicate that the gear-like nanotubes (g-NTs) are
energetically more favorable than their hexagonal counterparts (h-NTs). All the g-NTs are found to be
semiconducting and their electronic transport coefficients are calculated within the relaxation time
approximation. At room temperature, the Seebeck coefficients exhibit obvious peaks near the band edge and
their absolute values are very large and increase monotonically with increasing band gaps of the nanotubes.
The MD simulations show that the investigated BiSb nanotubes have very low lattice thermal conductivity.
The significantly enhanced ZT value suggests that by appropriate doping the BiSb nanotubes could be excellent
candidates for the thermoelectric applications.

1. Introduction

Since the discovery of carbon nanotubes (CNTs),1 one-
dimensional nanostructures have attracted great interest due to
their unusual properties and potential applications in many fields.
In particular, nanostructures have played a significant role in
the development of high-performance thermoelectric materials.
The efficiency of thermoelectric materials is given by the
dimensionless figure of merit ZT ) S2σT/(κe + κl), where S is
the Seebeck coefficient, σ is the electrical conductivity, T is
the absolute temperature, and κe and κl are the electronic and
lattice thermal conductivity, respectively. How to enhance the
ZT value is a key point in the application of thermoelectric
materials. During the past 50 years, the Bi-based compounds
are found to be promising thermoelectric materials which have
a ZT value of about 1 at room temperature.2-4 In 1993, Hicks
et al. theoretically predicated that two- and one-dimensional
structures could have much larger ZT values than the corre-
sponding bulk materials.5,6 The improvement of thermoelectric
efficiency in the low-dimensional systems can be attributed to
the enhanced power factor (PF ) S2σ) caused by a sharper
density of states near the Fermi level, as well as the reduced
lattice thermal conductivity caused by the increased phonon
scattering. Since then, much effort has been made to experi-
mentally synthesize the Bi-based low-dimensional materials.
Among them, the Bi1-xSbx thin films,7-9 nanowires,10-13 and
nanotubes14 have been successfully produced and their enhanced
thermoelectric performances have been suggested. On the
theoretical side, the Bi nanowires,15,16 nanotubes,16-18 and the
BiSb nanowires with superlattice and core-shell structures19

have been systematically studied by first-principles calculations.

Most of the investigated systems have the same crystal structure
as the Bi or BiSb alloy and are oriented along some particular
directions.

Very recently, Teweldebrhan et al. have successfully disas-
sembled Bi2Te3 crystal into its building blocks, the Te-Bi-
Te-Bi-Te atomic 5-folds, and obtained the atomically thin
crystalline films and ribbons of bismuth telluride. The prepared
two-dimensional systems are reported to have high electrical
conductivity and low thermal conductivity.20,21 The bulk Bi has
a similar pseudolayered structure as Bi2Te3, that is, one Bi atom
is connected to three nearest neighbors and forms a trigonal
pyramid. These pyramids further form a buckled layer by vertex-
sharing. The closest distance between neighbor Bi atoms in the
same layer is 3.07 Å with covalent bonds. The interactions
between adjacent layers are much weaker, and it is reasonable
to expect that a layered structure can be disassembled from the
bulk Bi under certain experimental conditions. Likewise, one
can obtain the BiSb layer from the bulk BiSb alloy in which
each Bi atom is covalently connected to the three nearest Sb
atoms. In analogy with carbon nanotubes, the BiSb nanotube
can be viewed as rolling such a BiSb layer into a cylinder so
that the structure is quasi-one-dimensional. It should be noted
that Su et al.17 have studied the electronic properties of Bi
nanotubes with such atomic configuration using first-principles
calculations.

In this work, we use a multiscale approach to investigate the
structural, electronic, and thermoelectric properties of BiSb
nanotubes. First, the structural stabilities and electronic proper-
ties are studied using a first-principles pseudopotential method.
The electronic transport properties are then calculated using the
semiclassic Boltzmann theory and rigid-band approximation.
In the end, we construct the classical interatomic potentials for
BiSb nanotubes by fitting first-principles total energy calcula-
tions and calculate the lattice thermal conductivity using
molecular dynamics (MD) simulations. We shall see that the
ZT value of BiSb nanotubes can be very high which suggests
their promising thermoelectric applications.
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2. Computational Details

Our first-principles calculations have been performed using
a plane-wave pseudopotential formulation22-24 within the frame-
work of density functional theory (DFT). The exchange-
correlation energy is in the form of Perdew-Burke-Ernzerhof
(PBE)25 with generalized gradient approximation (GGA). Since
Bi and Sb atoms are both heavy elements, the spin-orbit
coupling is considered in the calculations. We adopt a standard
supercell geometry26 so that the BiSb layers/tubes are aligned
in a hexagonal array. The closest distance between the layer/
tube and its periodic images is set to be 12 Å so that they can
be treated as independent entities. The k points are sampled on
a uniform grid in the BiSb layers or along the BiSb tube axis.
Optimal atomic positions are determined until the magnitude
of the forces acting on all atoms becomes less than 0.05 eV/Å.
On the basis of the calculated band structure, the electronic
transport coefficients can be derived by using the semiclassical
Boltzmann theory27 and relaxation time approximation. Within
this method, the Seebeck coefficient S is independent of the
relaxation time (τ), while the electrical conductivity σ, the
electronic component of thermal conductivity κe, and the power
factor S2σ can only be evaluated with respect to the parameter
τ. The lattice component of thermal conductivity κl is predicted
using equilibrium molecular dynamics (EMD) simulations
combined with the Green-Kubo autocorrelation decay
method.28,29 The time step is chosen as 0.55 fs, and 3300 ps
raw heat current data are collected to calculate the heat current
autocorrelation function.

3. Results and Discussion

We begin our discussions with a buckled layer of BiSb. As
mentioned above, this structure can be obtained from the bulk
BiSb alloy. Figure 1 is a ball-and-stick model of the buckled
layer. For comparison, the planar BiSb layer is also shown which
is similar to a graphene sheet. In the planar structure, each Bi
atom is covalently connected with three Sb atoms with identical
bond length of 3.00 Å and bond angle of 120°. For the buckled
layer, the corresponding values are 2.99 Å and 91°. The buckling
distance ∆ denoted in Figure 1b is found to be 1.69 Å. By rolling
the planar and buckled layers, one can obtain the hexagonal
(h-) and gearlike (g-) BiSb nanotubes (NTs), respectively. It
should be mentioned that there exist two different atomic
configurations of g-NTs. For the type I g-NTs, all the Bi atoms
form the inner layer and Sb atoms form the outer one. It is just
reverse for the type II g-NTs. These three kinds of BiSb
nanotubes are illustrated in Figure 2, where both the top and

side views are shown. We find that for the g-NTs, the average
length of Bi-Sb bonds “along” the tube axis is a little shorter
than those bonds wrapping “around” the tube circumference,
which is due to the curvature effect and is very similar to that
of CNTs.30 Moreover, the distances between the inner and outer
layers of g-NTs are in the range of 1.65-1.75 Å, which is
approximately equal to the buckling distance ∆ of the buckled
BiSb layer.

Figure 3 plots the total energies of BiSb nanotubes as a
function of tube diameters, where both the h-NTs and g-NTs
are considered. For comparison, the results of the corre-

Figure 1. Ball-and-stick model of the (a) planar and (b) buckled BiSb
layers. Big blue balls represent Bi atoms, while small yellow balls
represent Sb atoms. Both the top and side views are shown.

Figure 2. Three kinds of atomic configurations of BiSb nanotubes:
(a) h-NT, (b) type I g-NT, and (c) type II g-NT. Both the top and side
views are shown.

Figure 3. Calculated total energies (in units of eV/Bi-Sb atoms) of
three kinds of BiSb nanotubes as a function of tube diameters. For
each kind, the armchair, chiral, and zigzag tubes are considered.
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sponding planar and buckled layers are also indicated. We
see that the energies of h-NTs increase monotonically with
increasing diameters and finally approach to the value of
planar BiSb layer. It is interesting to note that the energies
of h-NTs only depend on the tube diameter and there is no
chirality dependence. By fitting the calculated values, the
energy of a h-NT can be approximately expressed as E )
-0.624e-d/5.159 - 7.678, where d is the tube diameter. The
picture is however quite different for the g-NTs. As can be
seen from Figure 3, the energies of both type I and type II
g-NTs are lower than those of h-NTs and decrease with
increasing diameters and finally approach to the energy of
buckled BiSb layer. At relatively smaller diameter, the
energies of type II g-NTs are a bit lower than those of the
corresponding type I g-NTs. There is a weak chirality
dependence of the total energies for both type I and type II
g-NTs, that is, the energy is highest for the zigzag BiSb
nanotube, lowest for the armchair nanotube, with the chiral
nanotube in between. However, when the tube diameters are
increased, these energy differences become smaller and
smaller and finally all the energies approach that of the BiSb
buckled layer.

We have also calculated the electronic properties of these
h-NTs and g-NTs with different diameters and chiralities. It
is found that almost all the investigated BiSb nanotubes are
semiconducting and the corresponding band gaps are sum-
marized in Table 1. We see that the band gaps of g-NTs are
obviously larger than those of the h-NTs with the same
diameter and chirality, and the band gaps of the type I g-NTs
are on the other hand larger than those of the type II g-NTs.
As shown in Figure 4, the band structures of BiSb nanotubes
are very sensitive to their atomic configurations. In particular,
all the semiconducting h-NTs have indirect band gaps (see
Figure 4a-c). This is however not the case for the g-NTs.
We see from Figure 4d that as the diameter increases, the
valence band maximum (VBM) of type I g-NTs (n, n) slowly
moves away from the Γ point while the conduction band
minimum (CBM) moves toward the Γ point, which exhibits
a transition of indirect-direct-indirect band gaps. The VBM
of type II g-NTs (n, n) (Figure 4g) has similar behavior as
their type I counterparts (Figure 4d); however, the CBM does
not move toward the Γ point with increasing diameter, thus
all type II g-NTs (n, n) are indirect-band-gap semiconductors.
As for the g-NTs (n, m), we see from parts e and h of Figure
4 that all of them have indirect band gaps where the VBM is
a little away from the Γ point. On the other hand, we see
from parts f and i of Figure 4 that the type I g-NTs (n, 0)

change from indirect- to direct-band-gap semiconductors with
increasing diameters, while all the type II g-NTs (n, 0) exhibit
indirect band gaps.

We now move to the discussions of transport properties
of BiSb nanotubes. Here we focus on the type II g-NTs since
they are energetically more favorable than the corresponding
h-NTs and type I g-NTs. On the basis of the above-mentioned
band structures, we are able to evaluate the transport
coefficients by using the semiclassical Boltzmann theory27

and the rigid-band approach.31 Figure 5 shows the calculated
Seebeck coefficients S and power factors S2σ as a function
of chemical potential µ at 300 K. Note here the power factors
are evaluated with respect to the relaxation time. Within
the rigid-band approach, the chemical potential indicates the
doping level of the system. In the case of p-type doping, the
Fermi level gets down-shifted corresponding to µ < 0. For
n-type doping, the Fermi level shifts up and µ > 0. As can
be seen from Figure 5a, the Seebeck coefficients of (n, n)
tubes have two peaks around the Fermi level (µ ) 0), and
the peak values at µ > 0 are relatively larger than those at µ
< 0 and reach a maximum (absolute) value of 794.6 µV/K at
µ ) 0.038 eV for the investigated armchair tubes. In contrast,
there are several peaks around the Fermi level for the Seebeck
coefficients of (n, m) tubes (see Figure 5b). The maximum
Seebeck coefficient for the considered chiral tubes is 763.0
µV/K at µ ) -0.043 eV. As for the (n, 0) tubes, there also
exhibit two peaks in the calculated Seebeck coefficients
around the Fermi level (see Figure 5c). Among the investi-
gated zigzag tubes, we see that the (6, 0) has the largest
Seebeck coefficient with the absolute value of 969.9 µV/K
at µ ) 0.046 eV. One may wonder if there is a relation
between the diameters and the Seebeck coefficients of these
BiSb nanotubes. However, if we focus on the calculated band
gaps (Table 1), we find that for all the three kinds of
nanotubes, the absolute peak values of Seebeck coefficients
actually increase with increasing band gaps. This is consistent
with previous reports as long as the doping level is not very
high.32 It should be mentioned that compared with other Bi-
based systems, these BiSb nanotubes exhibit much larger
Seebeck coefficients, which is very beneficial for their
thermoelectric applications.

Parts d-f of Figure 5 plot the power factors (S2σ) as a
function of chemical potential (µ) at 300 K for these BiSb
nanotubes, where the relaxation time τ is included as a
parameter. We find that for all the investigated nanotubes, there
exist obviously sharp peaks around the Fermi level, which
indicates that the power factors of these nanotubes can be largely
optimized by proper doping. Within the rigid-band picture, the
optimal doping concentration can be obtained by integrating
the density of states of these nanotubes from the Fermi level to
the desired chemical potential.33 We further find that the (n, 0)
and (n, n) tubes generally have larger peak values of the power
factors than those of the (n, m) tubes. On the other hand, we
see from Figure 5e that for the (4, 2) and (5, 2) tubes which
have relatively smaller band gaps, there exist more than one
sharp peak both below and above the Fermi level. This
observation may result from large oscillations of their Seebeck
coefficients and is very different from those tubes with larger
band gaps.

To study the thermal transport properties of the BiSb
nanotubes, we have performed classical MD simulations where
suitable interatomic potentials are needed. However, as far as
we are aware, there have not been any available empirical
potential for the nanostructures of BiSb. Considering that the

TABLE 1: Calculated Total Energies E (in units of eV/
Bi-Sb atoms) and Band Gaps Eg (in units of eV) of Three
Kinds of BiSb Nanotubes with Different Diameters D and
Chiralities

h-NTs type I g-NTs type II g-NTs

D E Eg D E Eg D E Eg

(3, 3) 8.75 -7.80 0.13 7.54 -8.16 0.42 7.34 -8.23 0.26
(4, 4) 11.48 -7.74 9.71 -8.27 0.58 9.57 -8.30 0.31
(5, 5) 14.33 -7.72 0.04 11.98 -8.32 0.68 11.89 -8.34 0.41
(8, 8) 22.92 -7.68 0.01 18.93 -8.37 0.59 18.81 -8.38 0.49
(4, 2) 8.89 -7.79 7.73 -8.15 0.37 7.57 -8.21 0.02
(5, 2) 10.36 -7.76 0.09 8.93 -8.23 0.55 8.81 -8.27 0.24
(8, 2) 15.16 -7.71 12.75 -8.32 0.66 12.58 -8.34 0.44
(12, 3) 22.74 -7.69 0.01 18.85 -8.37 0.55 18.18 -8.37 0.49
(5, 0) 8.45 -7.80 0.21 7.56 -8.09 0.72 7.41 -8.14 0.48
(6, 0) 9.96 -7.76 0.23 8.76 -8.19 0.79 8.57 -8.23 0.62
(8, 0) 13.33 -7.73 0.11 11.32 -8.29 0.74 11.08 -8.32 0.53
(10, 0) 16.54 -7.70 0.14 13.91 -8.33 0.65 13.74 -8.35 0.51
(14, 0) 23.16 -7.69 19.21 -8.37 0.54 19.06 -8.38 0.47
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Figure 4. Calculated energy band structures of (a) armchair h-NTs, (b) chiral h-NTs, (c) zigzag h-NTs, (d) armchair g-NTs of type I, (e) chiral
g-NTs of type I, (f) zigzag g-NTs of type I, (g) armchair g-NTs of type II, (h) chiral g-NTs of type II, and (i) zigzag g-NTs of type II. The red
arrows indicate that the band gap is direct or indirect.
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interatomic interactions in the BiSb nanotubes are mainly of
short range, we employ a simple two-body Morse potential
which includes the anharmonic interactions and is found to
predict the lattice thermal conductivity quite well.34 The Morse
potential is in the form of �(rij) ) De{[1 - e-a(rij-r0)]2 - 1},
where De is the depth of the potential well, a is the measure of
bond elasticity, rij is the interatomic separation between atom i
and j, and r0 is the equilibrium bond distance. The parameters
in the Morse potential can be determined by fitting the energy
surface from first-principles calculations.32,34 The energy surface
is scanned by changing the tube diameters, the distances between
the inner and outer walls, and the periodic lengths along the
tube axis to obtain a series of distinct configurations. The fitting
procedure is done by using the so-called GULP code.35 Here
we take type II g-NT (5, 0) as an example and the optimal
parameters in the Morse potential are listed in Table 2. It is

obvious that the Bi-Sb bond has a much higher bonding energy
than that of the Bi-Bi and Sb-Sb bonds. On the other hand,
the Bi-Bi bond is a bit stronger than the Sb-Sb bond.

Based on the MD simulations, the lattice thermal conductivity
κl can be predicted by using the Green-Kubo expression

Figure 5. Calculated Seebeck coefficients at 300 K as a function of chemical potential for type II g-NTs with different diameters and chiralities:
(a) armchair (n, n), (b) chiral (n, m), and (c) zigzag (n, 0). The calculated power factors for these BiSb nanotubes are shown in (d), (e), and (f),
respectively. Note (d), (e), and (f) are evaluated with respect to the relaxation time τ.

TABLE 2: Fitted Parameters in the Morse Potential for the
Type II g-NT (5, 0)a

interaction De (eV) a (1/ Å) r0 (Å) rc (Å)

Bi-Sb 2.510 0.940 3.11 4.5
Bi-Bi 0.294 1.960 4.11 6.0
Sb-Sb 0.115 1.540 3.52 4.5

a Here De is the depth of the potential well, a is the measure of
bond elasticity, rc is the equilibrium bond distance, and rc is the
cutoff distance.
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Here 〈Jµ(τ)JV(0)〉 is the heat current autocorrelation function, V
is the volume of the simulation system, κB is the Boltzmann
constant, and T is the system temperature. For a pair potential,
the heat current Jb(t) can be expressed as

where εi is the site energy of atom i, νbi is the corresponding
velocity, Fbij is the force between atom i and j, and rbij is their
separation. For the type II g-NT (5, 0), our calculated thermal
conductivity is 0.53 W/(m K) at room temperature. Simulations
for other BiSb tubes also find very low values of the lattice
thermal conductivity which is quite desirable for their thermo-
electric applications.

To evaluate the figure of merit ZT, we have to determine the
relaxation time τ which is included in the power factor as a
parameter. The accurate treatment of the relaxation time depends
on the exact doping atoms used in the experiments and the
detailed scattering mechanism. Here we just give a reasonable
estimation of τ. It is believed that near room temperature, the
electronic thermal conductivity of Bi-based nanostructures can
compete with that from the lattice.18,36,37 By assuming κe ) κl

and comparing the κe/τ calculated using the Boltzmann theory,
the relaxation time τ is readily obtained. For the type II g-NT
(5, 0), the calculated value is τ ) 1.3 × 10-12 s, which is larger
by 2 orders of magnitude than that of most Bi-based bulk
materials.33,38,39 It should be mentioned that this large τ is only
applicable for the pristine BiSb nanotube. Even if the relaxation
time would be reduced by an order of magnitude when the tube
is doped, we can still get a ZT value of about 6 at the optimized
doping level mentioned above (µ ) 0.23 eV, see Figure 5f).
Such a high figure of merit suggests that by appropriate doping,
the BiSb nanotubes should be very promising thermoelectric
materials which needs future experimental investigation.

4. Summary

In summary, we have performed multiscale computations to
study the thermoelectric properties of BiSb in several nanotube
structures. At electronic scale, the energy band structures of
these nanostructures are investigated using first-principles
calculations. The electronic transport coefficients are then
calculated within the Boltzmann theory. At atomic scale, the
lattice thermal conductivity is predicated by equilibrium mo-
lecular dynamics, where the parameters in the Morse potential
are obtained by fitting the total energy calculations at electronic
scale. Our theoretical results give the possibility to use BiSb
nanotubes as high performance thermoelectric materials.
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