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ABSTRACT 

Bimetallic Pd-Au nanoparticles have received much attention due to their potential 
applications in catalysis. We have developed a Pd-Au alloy potential based on Chen-Mobius 
lattice inversion method and applied it to the investigation of the melting of Pd-Au binary 
nanoparticles via molecular dynamics simulations. Our simulation results show the particle size 
dependence of the melting point and an enrichment of Au atoms to the surface near melting 
temperature. 
 
INTRODUCTION 

Bimetallic nanoparticles (NPs) have found wide applications in many practical areas such 
as vehicle exhaust gas after-treatments1. As one kind of prototype, Pd-Au NPs have received 
much attention because they are promising top-performance catalysis for NOx and/or COx 
oxidation2. Furthermore, Pd-Au NPs have desirable resistance against bulk oxide or sulfide 
formation in realistic engine operating conditions. Experimental observations have demonstrated 
that surface morphology and species constitutes a play key role in determining NPs’ catalytic 
performance. Though extensive studies based on density functional theory (DFT) calculations 
have been reported, the microscopic catalytic mechanism still remains controversial. One 
difficulty against the full understanding is that the computational cost of DFT calculations on 
NPs, which contain 102 ~ 105 atoms, are prohibitively expensive. Unfortunately, models with too 
limited sizes cannot take into account the effects of defects, segregation, etc. which are essential 
to the understanding of reaction mechanism. Therefore, methods based on empirical potentials 
could shed light on studies regarding to NPs with more realistic structures and sizes. Though 
assorted empirical potentials have been developed and reported 3, 4, the transferability and 
accuracy of these potentials are still limited and the morphology and thermodynamic stability of 
Pd-Au NPs are not well understood. Chen-Mobius lattice inversion formula, developed by Chen 
5, has been employed on different metal and/or alloy systems and has several advantages over 
previous empirical potentials. This analytic method based on number theory requires no 
presetting format of atomic interactions compared with other empirical potentials, such as Morse 
potential or Lennard-Jones potential, and thus is more general for systems with diverse structures. 
In this study, we report the development of a binary pair potential based on Chen-Mobius lattice 
inversion method, that exactly reproduces the DFT cohesive energy curves of Pd, Au, and Pd-Au  
L10 alloy structure.  We had also applied molecular dynamics (MD) simulations to investigate 
the dependence of the melting point of Pd-Au NPs on particle sizes and analyzed the particle 
morphology  as a function of temperature.   



THEORY  

1. Chen-Mobius Lattice Inversion Potential 

Chen-Mobius inversion formula was first derived by NanXian Chen 5 in 1990 based on 
the number theory and has been extended to multidimensional inverse lattice problems in 
condensed matter physics successfully 6. The lattice inversion potentials are constructed such 
that the interatomic potentials can be derived from the cohesive energy curve accurately with 
only moderate computational cost.  In the past years, Chen-Mobius lattice inverse formulas for 
many different structures have been derived 6-9.  

In this work, we used the cohesive energy curves from DFT calculations as the starting 
point for Chen-Mobius lattice inversion.  Vienna Ab Initio Simulation Package (VASP) 10 was 
used to obtain the cohesive energies of pure Pd, Au and Pd-Au L10 binary alloy, respectively. 
The projected augmented wave approach was used to represent the electron-ion interaction and 
Perdew-Burke-Erzenhof functional 10 as exchange-correlation functional.  A 16×16×16 K-
point mesh was set to sample the first Brillouin zone according to Monkhost-Pack scheme. The 
optimized lattice constants for Pd and Au were 3.94 and 4.19 Å, which are in good agreement 
with experimental values of 3.89 and 4.08 Å, respectively.  

Theoretically speaking, any cohesive energy )(xE can be expressed as a sum of many-
body interactions.  If only two-body interactions )(x  are considered: 
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where x  is the nearest neighbor distance, R  represents all the possible lattice vectors. For 
convenience, the potential function )(R can be expressed as  xnbnr )()( 00  . So Eq. (1) can be 

written as: 
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where )(0 nr  is the number of the nth set of lattice points; )(0 nb  is a series which represents the 

distance between the original atom as the reference and the nth set of lattice points, where n 
approaches infinity. 

In order to perform the Chen-Mobius inversion, we extend the series  )(0 nb  to a 

multiplicative closeness )(nb . Thus Eq. (2) can be transformed to the following: 
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According to the Chen-Mobius inversion, the solution to Eq. (3) is given by  
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where the inversion coefficient )(nI  is given by  



 
















)()|(
1

1

)(

)(
)(

kbnb
knb

kb
brnI  ,        (6) 

where 1k is Kronecker delta function. 

 

2. Molecular Dynamics Simulation for Pd-Au NPs Melting 

We used LAMMPS 11, 12 to perform MD simulations.  Five Pd-Au NPs with the number 
of atoms equal to 55, 147, 309, 561, 923, respectively, were researched. Non-periodic boundary 
condition was employed to mimic the finite size and free facets of NPs. We used canonical 
ensemble, and performed MD simulations at different temperatures changing from 100 to 2,000 
K with interval as 100 K. The time step was set to 2 fs. For each calculation, we spent 40 ps to 
get thermodynamic equilibrium for each NP, and then statistical data was gathered over 160ps.  

There is a well defined melting point to separate solid and liquid phases in bulk materials, 
which depends on temperature and pressure.  In the case of NPs, however, the melting point 
depends on the particle size.  There are various properties to characterize the melting point, such 
as Lindemann index, static structure factors, radial distribution functions, etc. In the present work, 
we employed Lindemann index 13-15,  which is defined as 
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where ijr  is the distance between atom i and atom j, N  is number of atoms, 
t
 indicates a time 

average. The melting temperature is characterized by a sudden jump in Lindemann index as a 
function of temperature. 
 
RESULTS AND DISCUSSION 

1. Inversion potentials of Pd-Pd and Au-Au 

For FCC structure, )(nb  and )(nI  have been reported in many previous literatures 6 and 
are tabulated in Table Ι.  According to the Chen-Mobius lattice inverse formula,  )(x  can be 
expressed as the following: 
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In order to evaluating the cohesive energies of Pd and Au within the nearest neighbor 
distance from 2.8 to 6.5 Å, we employed a cubic spline interpolation function. Outside this 
region, two approximate functions were adopted,  shown as the following: 
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where the coefficients A, B, C, and n were calculated to ensure C1 continuity at amin and amax.  
After the preparation of cohesive energies and relative coefficient series, the interatomic 
potentials of Pd-Pd and Au-Au can be obtained by solving Chen-Mobius inverse formula. The 
formula consists of infinite terms and only the leading 10 terms were calculated here, which was 



proved to achieve reasonable accuracy. The developed potential curves are shown in Figure 1(a).  
We can see that Pd-Pd bonds are generally stronger than Au-Au bonds across the whole range. 

Table Ι.  Related coefficient series of Chen-Mobius inverse formula for FCC structure 

n 1 2 3 4 5 6 7 8 9 10 

 2)(nb  1 2 3 4 5 6 7 8 9 10 
)(nr  12 6 24 12 24 8 48 6 36 24 
)(nI  1/12 -1/24 -1/6 -1/16 -1/6 1/9 -1/3 1/32 1/12 0 
 

   

Figure 1.  (Color online) (a) Interatomic potential of Pd-Pd, Au-Au and Pd-Au developed by 
Chen-Mobius lattice inversion method (b) Comparison of cohesive energy of Pd, Au and Pd-Au 

binary alloy from DFT calculations and from Chen-Mobius inversion potentials 
 
2. Inversion potential of Pd-Au 

In order to obtain the interatomic potential for Pd-Au, a reference structure including Pd 
and Au should be constructed. Here Pd-Au alloy with L10 super structure was chosen for 
simplicity.  With the presence of 2 Pd atoms and 2 Au atoms in a unit cell for Pd-Au,  the total 
system energy can be decomposed into three individual interaction, including Pd-Pd, Au-Au, and 
Pd-Au bonds. From above we derived the Pd-Au component: 

AuAuPdPdtotalAuPd EEEE           (10) 

where totalE  is total energy of the unit cell; PdPdE   and AuAuE   are the  cohesive energies of Pd-

Pd and Au-Au with L10 super structure, respectively, which can be easily calculated by adding 
up the interatomic potentials obtained above based on Eq. (2). 

By appropriately counting the hetero-pairs of Pd-Au bonds in L10 super structure, related 
coefficient series in the Chen-Mobius inverse formula are tabulated in Table П. When 
calculating )(0 nb  or )(0 nr  for Pd-Au alloy, only the bonds between hetero-pairs are counted.  

For example, if an arbitrary Pd (or Au) atom was selected as the reference atom, then only Au (or 
Pd) atoms were considered when counting the nth nearest neighbor.  

The Chen-Mobius inverse formula for L10 super structure can be given as the following: 
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The developed pair potential for Pd-Au is also shown in Figure 1(a).  Figure 1(b) shows 
the binding energy curves for Pd, Au, and Pd-Au L10 structure calculated with Chen-Mobius 
inversion potentials and DFT method.  From the figure, it can be seen that the developed 
potentials accurately reproduce DFT cohesive energy curves. 

Table П.  Related coefficient series of Chen-Mobius inverse formula for L10 super structure 

n 1 2 3 4 5 6 7 8 9 10 

 2)(nb  1 3 5 7 9 11 13 15 17 19 
)(nr  8 16 16 32 24 16 48 32 32 48 
)(nI  1/8 -1/4 -1/4 -1/2 1/8 -1/4 -3/4 1/2 -1/2 -3/4 

 
3. MD simulations of Pd-Au NPs Melting 

   
Figure 2.  (Color online) (a) Morphology evolution of three selected sizes of Pd-Au NPs with 

increasing temperatures. (b) Variation of the Lindemann index as a function of temperature 
 

Results of MD simulations for the melting of Pd-Au NPs are shown in Figure 2. Figure 
2(a) shows snapshots of the morphology evolution with the increase of temperature for three 
selected sizes of Pd-Au NPs (55, 309 and 923 atoms), respectively.  It can be seen that at low 
temperature, as 100K, the NPs keep their crystallographic L10 structures; with the temperature 
increasing, the NPs tend to become disordered gradually. When the temperature increases 
beyond a specified value, the NPs lose their crystallographic entirely and become molten state.  
It is clear that the larger NP has a higher threshold temperature. We could also observe that as 
temperature increases towards the melting point, the surface concentration of Au atoms increases.  
This is due to Au’s lower surface energy as compared to Pd atoms and increased mobility at 
elevated temperature.  As temperature increases even further, we observed increased Pd atoms 
on the surface, due to increased randomness at higher temperature. 

To characterize the melting point more quantitatively, we calculated the Lindemann index 
of these five NPs. Figure 2(b) shows the variation as a function of temperature. Three distinct 
regions are revealed.  At low temperatures the values of the Lindemann index are small, and rise 
up smoothly and slowly. When the temperature reaches a specified value, the Lindemann index 
has a sharp increase, as about 1200K for 55 atoms NP, 1300K for 147 atoms NP, and 1600K for 
309 atoms NP, 1700K to 561 atoms NP. In the third stage, the Lindemann index continues to 
increase gradually but at a slope larger than that in the first stage. As first order approximation, 

(a) (b) 



the melting point can be defined as the kink of the melting curve. It clearly shows that the 
melting points increase for larger size of NPs and get closer the value of bulk materials 
asymptotically. Such trend is consistent with previous reports, from both experiments16  and 
computations17. As to 923-atoms NP, no exact kink which defines the melting point can be find 
in Fig 2(b). However, there is no essential difference with other NPs. It is predictable that the 
melting point should be larger than 1700K, which is agreeable with the figure. The possible 
reason for the missing of sharp increase is the larger surface energy caused by size increasing. 
 
CONCLUSIONS 

We have developed pair potentials for Pd-Pd, Au-Au and Pd-Au based on the Chen-
Mobius lattice inversion formula and applied them to the study of Pd-Au NPs melting behavior.  
The Chen-Mobius inversion potentials accurately reproduces first-principles cohesive energy 
curves.  Our MD simulation results explicitly show the particle size dependence of melting point 
via Lindemann index analysis and enrichment of Au atoms on the alloy NP surfaces.   
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